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I. INTRODUCTION 

The primary objective of this paper is the solution of the 

following problem: 

If a non-gaussian continuous random process is the input to an 

arbitrary linear filter, what is the probability density function of 

the filter output? 

The technique used permits an approximate solution which can be 

made arbitrarily close to an exact solution at the expense of computation 

time and effort. The approximate solution is accomplished by forming 

a rectangular-pulse model of the continuous process and then treating 

that model. 

In some cases, the methods used allow for the solution to the 

inverse of the above problem. That is, if the output distribution 

is known, and the spectrum of the input is very wide with respect to 

the filter range, the input distribution can be determined. 

The form of this model, when 2t is a Markov process, also lends 

itself to the solution of the axis crossing distributions associated 

with the process. 

The most significant work published in this area has been accom

plished by Darling and Siegert (3). They have developed an integral 

solution £or a class of situations which includes the above problem 

if the input to the filter is a Markov process. Their derivation was 

aimed primarily at determining the probability density function for 

the output of a first-order filter, a square-law detector, and an 

arbitrary linear filter in series given a white-noise input. This 
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problem was then generalized to include other than square-law functions. 

Thus, for the case where the square-law detector is replaced by a 

linear device, their solution is equivalent to determining the distribution 

of the output of an arbitrary filter, given a continuous Markov process 

as an input. These integral equations are at best, however, difficult 

to solve and the technique in general is limited to Markov inputs only. 

McFadden (10) has used these and other techniques to determine the 

distribution of the output of an R-C filter if the input is a binary 

random process. Wohnam (17) has also developed a technique to determine 

the probability density of the output of a low-pass system when the 

input is a Markov step process with a finite number of states. 

The axis-crossing problem has received more attention. Rice, (13) 

in a comprehensive mathematical treatment of Gaussian noise, developed 

an expression for p(t) dt, the probability that a Gaussian random 

variable goes through zero (though not necessarily for the first time) 

in t, t + dt, when it is known that the variable goes through zero 

at t = 0 with a slope opposite to that at t. For narrow-band noise 

p(t) will be very close to the distribution of first-crossing durations 

for sufficiently small t. In general, Rice's treatment of the axis-

crossing problem requires knowledge of the joint distribution of the 

process and its derivative which, for many processes, does not even 

exist. 

Siegert (14) has solved for the first-passage probability density 

P(yQJ t,a)dt, the probability that a variable y(t) passes the value 

a for the first time in the interval t, t + dt if y(0) = yQ, on the 
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condition that y(t) is a Markov process. McFadden (8) has also 

determined expressions for the axis-crossing intervals for a stationery 

Gaussian Process, and several authors have investigated the first-

passage problem for discrete processes as a form of the Gamblers-

Ruin Problem. 

With the exceptions of Darling and Siegert's work on the filter 

output distribution and Siegert1 s work on the first-passage problem, 

most of the work in these two areas has been concentrated on the 

Uhlenbeck process and the Wiener-Einstein Process (16) both of which 

are normally distributed, or on discrete-valued processes. Hopefully, 

the techniques developed in this paper, which are markedly different 

from Darling and Siegert1 s methods, will prove useful for obtaining 

approximate solutions for classes of problems not covered by the 

works outlined above. 
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II. MODEL FOR Â FIRST-ORDER PROCESS 

A. The Difference Equation. 

Assume a random process generated by a series of adjacent rectangular 

pulses of equal duration t whose magnitudes are related by 

x = z + a x (1) 
n n n-1 

where 

= magnitude of the nth pulse 

= magnitude of the (n-1) pulse 

z^ = an independent random variable 

O. = a. positive constant less than one. 

From Equation 1,certainly x .. = z + OL x „ ; therefore 
n-1 n-1 n-2 

2 
x = z + a z , + a x „ 
n n n-1 n-2 

2 3 
= z + a z „ + a z „ + a z _ + (2) 

n n-1 n-2 n-3 

where z , z „, z „ are specific values of the random variable 
n n-1 n-2 

z. 

B. The Autocorrelation Function. 

Using Equation 2, the autocorrelation function for this process can 

be determined. First, the ensemble average of the function multiplied 

by itself, i.e. (j) (o), the autocorrelation function for 0 will be 

found. 

2 2 
x  . x  =(z + a z ,+a z 0 —)( z  + a z  + a z „ —) 
n n n n-1 n-2 n n-1 n-2 

Since z . z =0 when m = 0 this averaging process results in 
n n-m 
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*n ' \ = =n ' =n + ̂  =n-l ' =n-l + ̂  =,-2 ' =n-2 

= z2 a2n 
n=0,1,2 

Now, denote the autocorrelation function evaluated at t =At as «5(1); 

then 

<(1) " \ • Vl 

2 2 à =  a  z  ( i  +  a  +  a  - - - )  

= a(z 
n=0 

Similarly, 

6(2) = a' 

2 1 a2") 

V Z a2", n=0 

and, in general 

<5(j) = oP (<5(o)) 

This defines the value of the autocorrelation function at integral 

numbers of pulse durations. Because the process is made up of rectan

gular pulses connecting these values with straight lines will complete 

the autocorrelation function description. Figure 1 illustrates this 

approximation. 

— 0A t 
If a is now defined to be e • where At is the pulse duration 

of the process, 

|5(j) = [e 0AtJ i5(o) = e 0^At i6(o) 

Then if h = j't and At is made arbitrarily small 



www.manaraa.com

6 

coiïth;uous marxdv process 

RECTAIÎGUL/LR-PULSE MODEL 

Figure 1. Comparison of the autocorrelation functions for a continuous 

Markov process and for the rectangular pulse model used as an 

approximation to the continuous process. This particular case 

represents the case calculated in Example 5 where a = 0.368 
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6(t-) = e 9 6(0) 

It seems reasonable therefore, that this model can be used to 

represent a continuous Markov process in the limiting case where At 

is small. 

C. Conditional Probability Density Functions. 

Equation 1 states that x = z + 0! x ,, and if the process is 
n n n-1 

assumed to be time stationery (when sampled at points separated by 

the pulse width) then the distribution of x can be considered the 
n-1 

same as x^- Therefore, defining 

PQ(x) = probability density function for x 

Po(w) = Fourier transform of pQ. 

Pz(z) = probability density function for z. 

P (w) = Fourier transform of p (z). 
z rz 

it can be shown (6) from Equation 1, that 

Thus, the characteristic function for the probability density function 

of the random variable z is defined as 

This result can be used to specify the first conditional probability 

P (w) = P (w) P (Ow) 
o z o 

(4) 

(5) 

density function for x^, given xn_j> 

PK' "n-jj 

Since 
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x = z + a x 
n n n-1 

then 

Pj(xn>i) - a(xn-1) + pz(xn) (6) 

Further, 

x = z + a z . + a x „ 
n n n-1 n-2 

then, if x . is given, 
n-z 

x - OC x 0 = z + a z n 
n n-2 n n-1 

and therefore, the distribution of (x - C% x .) is P 
n n-2 {XNL V2VHI 

by an amount 0? x „ (See Figure 2). Pi (x - C? x 0)1 x _(has 
n-z ( n n-z n- zj 

shifted 

n-2 

characteristic function 

Pn|n-2 ("> = ' Pz(Ok) 

and in general 

Pn|n-j(w) = Pz(w) pz(aw) Pz(ajw) (7) 

=2j p («jw> 
n=0 Z 

P^(w) 

But since P^w) = "T^) 

n|n-j(*) (Î P(Ow) 

Po(w) 

PQ(aj+1w) 

" PQ(Ow)' "p (a2w) ' 
o 

" Pq(ajw)* 

.p (a2w) 
0 J 

PQ(a3w) p (aj+1w) 
L ° 

(8) 

This result states that the distribution of x given x . has a distribu-
n ° n-j 

tion, shifted by an amount OC^ x^ , with characteristic function 
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Po(w) 
— where P is again the primary distribution of the process. 

P0(«J w) 0 

To determine the probability density function for the process at 

a time t given the value of the function at time 0, let there be j pulse 

durations in the duration t. Then 

P (w) 
P. (w) - ° 
xt I xo PQ(aj+1w) 

-9A t — 
and, if a = e , and At = j, substitution of these quantities gives 

F0(»> P0<") 

Px W 

' ' "0 P„ [(e'6") + 1 3 P„ e'e(t+4t)» 

As At is made arbitrarily small 

V"> 

P W C w > "T^ < 9 )  

and the conditional probability density function shifted by an amount 

-0t 
e x is the inverse transform 

o 

-Ï1 
P (x - e 0tx ) x 

t o o 

P,(w) 

PQ(e" w) (10) 

Some simple examples of first probabilities are calculated here and are 

shown in Figures 2 and 3. 

Example 1. 

Consider a process with probability density function 

x ^ O  

= 0 x ^ 0 
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£_ Then P (w) = ; t~2r<—~—, and using Equation 10: 
X+ Jw 

6t| jw 

-et  -6t„ 
.iwe = e"St + ^(l-e "L) 

f t  - xo e" ' l^  
f + jw 

Therefore 

and 

V -et I V e~6t S(*t> + <s'(1"e"6t>e" 
£< x t  "  \  e  'Kj  

P jx. lx t- e"6t s (xt " xo e"6t) +^(l-e"6t)e ^ ' 0 

'(X=lXo) 

These functions are shown in Figure 3. 

Example 2. 

Consider a process with a distribution 

p -|S/2 e" ̂  

Then 

û L 

'  C 2  2  • 
+ w 

and from Equation 10: 

3M 
(x - x e"^)| 

+ *2 e-25t 

? 2 + 

= e-29t + g 2(l-e-20t) 

( g z + *2) 

which has an inverse 

-6t 
^(xt - xo e 6t)| x0^- e"26'5 (xt) + fl2(1-e 6t) 

PIM 

and therefore 

P £ *tl *0j = e"2etS <xt " xoe"0t) + /̂2(l-e"29t)e™ H(xt "V M 
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The primary and resulting conditional probability density functions for 

this process is also shown in Figure 2. 

Example 3. 

It may be comforting to consider the case where x is distributed 

normally. That is, 2 

1 2^ 

p o "  

then, 2 2 
<T W 

2 

PQ(W) = e 

2 2 
Therefore, crw 

2 

F > < \ -  2  
UT; • w e"20t) 

2 2 
^ (l-e-26t) 

= e 

Xt 

Taking the inverse of this expression yields 2 

0tN , „ ) _ 1 ~ 2o^(l-e-ZBt) 

,  -et  2  

_ (xt ~ Xoe } 

2a-2(l-e"29t) 

This result is sketched in Figure 3, and is referred to as the 

Uhlenbech Process. 
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Figure 2. The first conditional probability density function p^(x) 

for a Markov process with a primary distribution 

P Q ( X )  =  — e  a n d  n o r m a l i z e d  a u t o c o r r e l a t i o n  f u n c t i o n  

Xi0) = e'u|^. p <x) - e-2u6(x-xoe-ut) + <l-e"2u*)f 
gives the distribution of the variable x at t = ̂ given that 
x = x at time t = 0 

o 
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Figure 3. Two more examples of p^(x), the distribution of t = <^given 

x = x at t = C, and the associated primary distribution 

PQ(X) for each process 
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D. The Axis-Crossing Problem. 

Using the conceptual model described above, it is possible to 

predict various quantities associated with the times at which process 

value crosses a specified level. The first quantity to be calculated 

is the probability that the function was above a specified level 

for a time duration t when the location of the interval is randomly 

selected. For simplicity, it will be assumed that the specified 

level is zero ; for problems where that is not in fact the case, the 

probability density function can be redefined by translation so that 

zero will be the desired level for crossing. 

To begin, the probability that the function will be above zero 

for one pulse is stated as 

<o 

{ x l>  '° ] = / p 0 < x l )  ^1 

where x^ denotes the "first pulse interval". Now, the probability 

that the function will be positive over two successive intervals is 

[v* 2  > ° j  " { / d x i  
o o 

dx2 

where p(x^,x^) represents the two-dimensional distribution of the values 

of two successive pulses. This can be restated as 

{v*2 - / /pi{x2lxilpo(xi)dxi I 
° L °  J  

dx2 

where p ^x^j x^is the probability density function for the second pulse 

amplitude given the value of the first pulse amplitude. Therefore 
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oO 

r 

( K 2  I *1 > °f = j |,l[X2lXllP
0

(Xl,dX] 

Equation 6 shows that for this model, p^x^fx^is a function of 

%2 - ax^, where Oi = e 0^'t. Denote this first conditional probability 

function as po)l(x„ - ov ). Therefore 
2 ) 1 2 " "XV 

& 

42!xi> O). fp2ll (x2 - Ox1) Po(x1) dx]L (11) 

This can be written in the form of a convolution integral as 

p{x2|x1> o}=/p2ll(x2 - aXl) po
+(x1) dx. 

where p^(x^) = p^(x^) x1 > 0 

= 0 =1< °  

Taking the transform of both sides gives 

P2I1 '*0
+<•<*>) p2|l(w) (12> 

Now, = as defined in Equation 5 since l^X2^ describes 

the distribution of x^ translated by a value Ox^. From Equation 5: 

Po(w) 

Pz(") " Po(CW) 

Then 

P2l 1 > 0<"' " P=+(a*> -4^) <13) 

+ 
noting again that P (w) is the Fourier transform of the positive portion 

o 
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of the primary distribution. The inverse of this function, integrated 

from zero to infinity would yield the probability that the function was 

positive for two successive pulses. 

Continuing the same approach for three successive pulses one 

obtains : 

P{XVX2'X3 > °] * J 

«O 

p(x ,%2,x ) dx dxgdx 

•O «© rO 
o o o 

Pl{x2 I xl\ Po(xl)dxldx2dx2 
(14) 

0 o o 

Note that for the processes described by this model 

P2[*3|*2.xlj - P2[x3|x2̂  = Pl(x3 - °.x2) 

Therefore Equation 14 can be written as 

- JkO 

J J - k H  

0 \0 

P0(xl)dxl dx2 I dx3 

(15) 

Then by definition 

CO 

>|xvx2,x3 > 0j = ^p^x3|x2,xi > O] 

00 

dx = /p(x ) dx 

' 3]2,1>0 

Therefore 

.W 

P K) = / PL(X3 - AX
2) P2| 1 > 0(X2)  DX2 

3|2,1>0 

Taking the transform of both sides yields; 
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P (w) = P+(Ctw) P (w) 

3|2,1>0 2|1>0 211 

n 4-

Po+(Ow) Po(wl 

P (Oh) 
(16) 

PQ(Ctw) 

In the same manner, the probability that four successive pulses 

are positive is 

Thus, in principle, the characteristic function for the nth pulse 

distribution, given that the previous n-1 pulses were positive can 

be obtained by continuing this procedure. The integration of that 

function from zero to infinity will yield the probability that the 

function was positive for n successive pulses. 

This process does not produce a convenient closed form solution 

except for some special cases, one of which will be shown in a 

following example. It does, however, represent a repetitive convolu

tion process which could be programmed into a high speed machine. 

Example 4. 

Consider a process with probability density function 

dx 
4 

O 
where 

P (w) 

4|3,2,1 0 
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and normalized exponential autocorrelation function: 

«t) = e-9|tl 

The model described in 3.1 can be used to represent this 

process to within any arbitrary error. 

Then 

F < ° > ( U ) " / 7 7  

and from Equation 13. 

+ P
0

( W )  

P
2|Ïio = p0 (°") V^> 

i-U 
\ajw + 

-fa % 
- jwQp 

2 
fi + w 

"A2-xr^r + fa-, - jw) ( (y4 + jw) (18) 

The probability density function for the second pulse, therefore, 

given that the first was positive is given by the inverse of this 

equation: 

p2|l>0(x2)= (ir e~/*X2 X2> 
0 

^ ̂  (19) 
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Note that the positive portion of this function differs from the 

positive portion of the primary distribtuion only by a constant. 

That is 

p+ (x) = — P +(x) 

2 |  V  0  

Therefore 

P+ <„> = <l!g> P +(w) 

2|1> 0 2 0 

Continuing to include three pulse intervals, 

p2|i>o^>rër"] • V<""> y 

which, by Equation 18 is given by 

+ 

•i~L- [ flf> po+<»)] 

Therefore, in general, the Fourier transform for the positive portion 

of the probability density function for the Nth pulse amplitude 

given that the previous N-1 pulse were positive is given by 

N-1 

P (w) = [ ] P*(w) (20) 

N |(N-1,N-2---) 0 

-0  £  
Now let CL = e , and define an interval t = N At% letting At go to 

zero in the limit as t remains fixed. Then, the probability density 

function for the process at t is given all values between 0 and t, 

has a transform: 
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lim r 1 + e I 
, t-*0 l 2 J 

-0 At nty A11 " 

?/(«) 

Note as/lt-kO%^t/A t - l)-»t/£t. Then set 

X • Nt^ï 

t/nt 

In X = t 
ln(-

1+e 
•9 At- 1 

And 

S o M -

At 

lim 

A t-*0 V"" "J At-*0 ùt 

This is of the form zero over zero, but by L'Hospital's rule, 

>1% t "  x 3  - c  

-ye 
-9 A t 

,1+e 
-0 At 

-) 

Therefore, 

lim 
-St 

X = e 2 
Ù t-»0 

From Equation 20 

-0t 

PN| (N-1,N-2— )> 0(w) e ̂  Pq (w) (21) 

The integral from zero to infinity of the inverse of this expression 

is 

r -0t , 
dx 
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- 6 t  

e 
= Pjx>0 over interval t[ (22) 

2 ( 

Since the process is symmetrical about zero, the probability 

that the function will be negative over an interval t must be the 

same as the probability that it will be positive. Therefore ; 

P f no crossing over interval tj = p£x>0 over t^ + P|x<0 over 

- 6t 

= e 2 (23) 

It follows that the probability of at least one crossing in an 

interval t is given by 

-  e t  

1 - e 2 (24) 

Continuing, the probability of exactly one crossing in an interval 

t will be calculated. To do this, consider the interval t consists 

of n pulse intervals. Further, define the following events: 

Event 1 = The function is positive for the first j pulses of 

the interval t. (j < n) 

S t 
Event 2 = The (j+1) pulse is positive. 

S t 
Event 3 = The (j+1) pulse is negative. 

Event 4 = The (j+2) through nth terms are negative. 

Then P^3,1^ is the probability that the function is positive for j in

tervals and then crosses the axis between intervals j and j+1. From 

Equation 23, 

P [l,2} = 
2 (j+1) & t 

p [xï  i < j A t )  

Then since 

P [l,2|= P [2|l] p|l| 
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Further, 

P(2 | ! i  = 

p |2 | i ]+ r ^3Ji^ -

= e 

Therefore 

[3|l] " 1 " P î 2|l\ 

fAt 

= 1 - e 

24 

At 

But 

P (3,l\= P [3|l] p(l\ 

2 (j At) [ 1-e 

At 

Now, from Equation 18 it is known that the form of the negative portion 

of the probability density function for the magnitude of a pulse, 

given the previous pulse was positive, is of the same exponential 

order and form as the primary distribution. Therefore, the probability 

S t 
that the function will be negative from the (j+1) pulse through the 

nth pulse given that it was positive for the first j intervals can be 

calculated in the same manner. That is; 

P^l.3,4^ = p[ 411,3| . P [ 1,3$ 

-~2 (n-j-l)ût % (iAt) 0 
2 At 

(l-e ) 

- e 
7 (n-l) - f d t  

(l-e 
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This is the probability, that in an interval t, the function 

will be positive for exactly j intervals, cross the axis between the 

jth and (j+l)st interval and be negative for the remainder of the 

duration t. Note that it is independent of j, which indicates that 

the one crossing in interval t may occur with equal probability 

between any of the n intervals. There are n-1 such locations, so 

that the probability of there being exactly one crossing from positive 

to negative in an interval t is 

" j (n-1) _ 0^t 

(n-1) — ^ d-e 2 ) 

From symmetry the probability of there being exactly one crossing 

would be twice this value. 

Since there are n intervals of At in t 

t 
11 At 

and the probability of there being exactly one crossing in an interval 

t, asi t + o is 

lim 

A t-» 0 

r  

At 
- 1) 

I < It -l) 

(l-e 
At 

1 

j 

= ("2—) e (See Figure 4) (25) 

Similarly, the probability of exactly two crossings can be calcu

lated, but it is simple to note that Equations 23 and 25 are the same 

form as the probability for zero or one event in a Poisson process. 

For such a process; 
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Figure 4. Shows p (£~), the probability that exactly n crossings occurring in a randomly chosen 
interval of duration , for the process described in Example 4 
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P^ri crossingsj = Pn(t) = ( ^^— e (26) 

Here then, is a continuous Markov process whose zero crossing 

durations form a Poisson process. 

The "apparent period" or average axis crossing duration can be 

determined by first calculating the average value of t^, the duration 

in which n crossings will occur. Then since there are n+1 durations 

for n crossings in a given interval, the average time between crossings 

is given by (Avg. t )/(n+1). 

Avt , - ft n 

^ r<o~ 
n ! 

e dt 

= (n+1) (—2 ) (27) 

Therefore, the average duration between crossings is ( 1 ). 

E. The Filter Problem. 

The problem is as follows ; if a non-gaussian random process is 

the input to a linear filter, what is the probability density function 

of the output? In this section this problem is treated only with 

respect to processes representable by the first-order model described 

in section II-A. In a later section, the same problem is posed for 

a higher order model. 

Assume a process x(t) is the input to a filter with an impulse 
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response of h(t) and a resulting output y(t). 

x(t) is assumed to be made up of a series of rectangular pulses ; 

then y(t) can be written as the convolution of the input x(t) with the 

impulse response h(t): 

y(t) = J h(u) x(t-u)du (28) 

Since x(t) is made up of a series of rectangular pulses of duration 

t, this can be written as; 

At 2 At 

yn -  x„ J  h < t >dt + Vl f h(t,dt (29) 

where x^ = magnitude of ith pulse. Note that y(t) = y^ implies 

y(t) is being evaluated at the end of the nth input pulse. For 

convenience define: 

t 

Kx = Jh(t) dt, 

° 

2 At 

K2 = J h(t) dt 

At 

n^t 

Kn = J" h(t) dt (30) 

À(n-1)A t 

Then 

y„ * Klx„ + K2xn-1 + K3Xn-2 + (31> 

In an ensemble sense, x,x ., x „ are random variables 
n n-1 n-2 

from the same sample space related by Equation 1, and K^, K^, 

are constants. 
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From Equation 2; 

2 
x = z + az , + a z „ + — 
n n n-1 n-2 

2 
x =z . + az . + a z --
n-1 n-1 n-2 n-3 

Therefore 

yn " Kl(2n + °Vl + a \ -2 —> 

+ K2(Vi + azn.2 + a22n_3 —) 

+ k3<V2 + azn-3 —) 

which can be rearranged as 

\ ° =n*l) 

+ Vl(K2 + "*•!> 

+ 2n_2(K3 + OK2 + (32) 

Letting = a, K2 + QK^ = b, K + OK2 + OK = c etc., 

y„ • az„ + bz„-l + czn-2 (33) 

Then the characteristic functions are related by 

Y(w) = Z(Ow)Z(bw)Z(cw) — - (34) 

Thus, in principle, the characteristic function of the probability 

density function for the output of any linear filter can be determined 

given an input which can be approximated by this conceptual model. 

Mechanically one needs only to determine the constants a, b, c in 

Equation 33, carry out the multiplication, and take the inverse trans

form. The number of constants required will, of course, depend upon 

the specific problem, but in general, choosing a relatively small At will 
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decrease the error of the representation both at the input and output 

of the filter, but will greatly increase the computation required to 

obtain an answer. This technique is illustrated by calculating the 

output distribution of three different filters with the same non-

Gaussian process as inputs. 

Example 5. 

Consider the continuous process with a probability density 

function 

p (x) = y3 e ^ X x > 0 

= 0 x < 0 

an autocorrelation function 

(At)  -  = - l t l  

as the input to a simple R-C low-pass filter with an impulse response 

h(t) = 1/RC e"t/RC 

With the assistance of a digital computer, the output distributions 

were calculated for values of RC = 1, RC = 3, and RC = 6. The essentials 

of the case RC =3 is outlined below, and the plotted results for all 

three cases are shown in Figure 4. For RC - 3 a value of At = 1 was 

chosen, thereby implying 

a = e 1 = 0.368 

Somewhat arbitrarily, twelve values of k were calculated. The relative 

insignificance of several of the resulting terms confirmed that this was 

more than adequate. 



www.manaraa.com

They are; 

l " l  

1/3 e"t/3dt = 0.284 

2 
1/3 e"t/3dt = 0.203 

K = 0.145 

K. = 0.104 
4 

K = 0.074 

K, = 0.053 
b 

K7 = 0.038 

Kg = 0.027 

K = 0.019 

K10= 0.014 

Kxl= 0.010 

K12= 0.007 

Following from Equation 33, 

a = Kx = 0.284 = 1/3.65 

b = OK + Kg = 0.304 = 1/3.26 

c = 0.258 = 1/3.88 

d = 1/5.02 

e = 1/6.8 

f = 1/9.3 
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h = 1/17.9 

i = 1/25.0 

j = 1/33.4 

k = 1/47.5 

1 = 1/66.5 

Therefore, from Equation 5, 

z(s) = 
cts + p 

S + (l 

and from Equation 34, 

Y<='  -

, as +P/a, ,as +/$/b , , as +/Vl . 

" ( s +f/a> ( s +|d/b  ̂— — ( s +(!l ) 

- rv12  , A B  _ _ _  L  
s + fi! a s + pi b s + ̂5/1 

Calculation of the constants A.,B,C, L provided 

A = -1.545 x 103 

B = 4.502 x 102 

C = 1.166 x 103 

D = -73.41 

E = 2.43 

F = 2.569 x 10"3 

L = 4.601 x 10"6 

12 
The term OL must be ignored since these equations are really truncated 

approximations of an infinite product. Therefore, the output can be 

written; 
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P(y) = -1.545 x 103 e"3"65+ 4.502 x 102 e™3,26 - + 4.601 x 10"6 e™66,5 

This function, the results for the other two cases, and the common input 

distribution are shown in Figure 4. 



www.manaraa.com

Figure 5. Shows the output distributions for three different filters with the same input, 

also shown. The^three filters are simple low-pass filters with impulse responses 

h(t) = p — e for values of RC equal to 1, 3, and 6 
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III. MODEL FOR A SECOND-ORDER PROCESS 

A. The Difference Equation. 

As in Section II, assume a random process generated by a series 

of adjacent rectangular pulses of duration T. In this case, however, 

the magnitudes of the pulses are related by; 

*n = + Vn-l + Vn-2 (35) 

where again, 

= magnitude of the nth pulse 

x
n ^ = magnitude of the first pulse preceding the nth pulse 

= an independent random variable 

0^,&2 = constants. 

Equation 35 can also be written as 

xn "a„V Vn- l  + Vn-2 + Vn-3 (36> 

where 

a = 1 
o 

=°i 

a2 = °12 + °2 

an = "lan-l + °2an-2-

This process will be shown to represent an approximation of a fairly 

wide range of second order processes for various choices of and Ct^. 
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B. The Autocorrelation Function. 

Since the simulation of a process with a known autocorrelation 

function requires the proper choice of constants and Q^, it is 

desirable to have a systematic method to make this choice. Because 

the process defined is essentially a sampled-data sequence, many of 

the techniques utilized in sampled data systems are directly applicable, 

particularly in regard to the autocorrelation function. 

Starting with the difference equation 35, 

X„ " °lVl + Vn-2 + Zn 

and taking its Z-transform, one obtains; 

2 
X(z) = Z(z) —r-5 

z -e^z-o^ 

One can consider the process X(z) as the output of a filter with a z-

transform transfer function 

2 
G(z) = -y5- (38) 

z -a^z-o:2 

and an input process z(z). The relation between the autocorrelation 

function of the input process z and the output process X is given by: 

$(») = G(z)G(z 1) <j)(z) 

XX zz  

In the model presented, the magnitudes of z's are independent of each 

other, so that on a normalized basis, 

(j>(z)= 1 

ZZ 

and therefore 

(z) = G(z)G(z"1) (39) 

XX 
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Thus, given the difference equation 35, one can determine the 

value of the autocorrelation function at integral values of T. Since 

the model process is a sequence of rectangular pulses, a straight line 

connection of these points will represent the autocorrelation function 

for the model. 

Similarly, if one knows the autocorrelation function of a process 

to be approximated, the constants of the difference equation can be 

determined by factoring ^(z)in to G(z)G(z ^). % 

xx 

Example 6. 

Assume the continuous process to be approximated can be considered 
w 
o 

as the equivalent of the output of a filter G(s) = % :— with a 
(s+a) +w 

o 

white, but not necessarily gaussian, random process as an input. If 

w = 1, a = 0.22; 
o 

G (s) = 

(s+.22)2+l 

and 

, < -0.22t 
g(t) = e sin t 

The z-transformation of g(t) is written; 

N _ -0.22T . _ z 
G(z) e sin T 2 -0.22T . -0.44T 

z -(2e cos T) z+e 

Comparison with Equation 38 shows that 

otj - 2e"°'22T cos I 

a2 - -e"0"441 
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If T is chosen to be 7" : 

a = 1.18 

a = -0.707 

Having determined these constants, <S(z) can be plotted by using 

xx 

Equation 39, or as a mechanically easier alternative, it can be shown 

that f$(nT) obey the following difference equation and initial conditions 

xx 

"l 
(1) 6(T) = 1 _a (5(0) 

xx 2 xx 

(2) »5(nT) = a {> (n-l)T + d (n-2)T for n >1 (40) 

XX XX XX 

Figure 6 shows the autocorrelation function for the model process 

as compared to the autocorrelation function for the continuous process. 

Figure 7 shows some other possible plots of ^(nT) for various com

binations of and d 

C. Conditional Probability Density Function. 

In order to eventually solve the filter problem for the second 

order process it is necessary to develop an expression which will 

provide the distribution of the "generating" random variable z given 

the distribution of the process to be approximated. To do this, 

manipulation of some conditional probability density functions is 

required and the terms defined as follows will be employed. 

(1) P \= Px(xn) = primary distribution of the random process x. 

(2) P jz (= p (z ) = distribution of the generating variable z. 
I n< z n 
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Figure 6. Compares the autocorrelation function of the output of a filter having a transfer 

function G(s) = and a white noise input, with the autocorrelation 
(s + 0.22) + 1 

function for a rectangular-pulse model process 



www.manaraa.com

1.0 

-0.707 

-0.22b, 

o 

- 0 . 5  

0.22CJIU t ) 



www.manaraa.com

Figure 7. Shows three different examples of autocorrelation functions for the second-order 
process. The values of and (% for each example are labeled in the figure 
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(3) P lx [X .? = f.(X -k.X .) gives the conditional distribution 
L n1 n-j5 J n j n-j 

of X if X is defined. 
n n-1 

The last equation, stating that the probability density function 

for the magnitude of the nth pulse, given the value of the (n-j)1"^ 

pulse, can be written in the form f^(x^-k^X^ ) may be an arbitrary 

assumption in that its uniqueness is not proven here. It is, however, 

consistent within itself. That is, all conditional probability state

ments are satisfied and the autocorrelation function is correctly pre

dicted by this assumption. 

On these premises then, the statement 

can be written 

The Fourier transform of this equation yields 

Px(k iw)  =  y«> 

or 

P%(") 

(41) 

Similarly, 

From the process definition, it can be seen that 

Therefore ; 

) = /p (x -a x 
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= e^n-2^l\) (43) 

This equation provides two results 

(1) k2 = a1k1 + a2 

This is obviously true if p^(x) is symmetrical about x = 0 since 

then f^(x), and therefore, f^(x) must also be symmetrical about 

zero from Equation 41 and p^ (z) certainly must be symmetrical about 

zero, if a sum of independent z's yield a symmetrical distribution. 

It can also be verified for this and other cases on the basis that it 

is consistent with the autocorrelation function statement. That is: 

<(JT) ' UW-i P{Wj^ dxndxn-j 

= I / x x . Psx I x .> pfx . \ dx dx 
JJ n n-j (_ nl n-j j £ n-j ) n n-j 

xx .f.(x -k.x .)p (x .)dx dx 
n n-j j n j n-j x n-j n n-j 

'x f.(x -k.x .)dx 
n J n j n-j n dXn-3 

The quantity within the brackets is just the average of the function 

f. (x -k.x .), denoted by <(f.(x -k.x .) > . But, 
J n j n-j s j n j n-j ' 

< WjVj»' kjXn-j + <£j> 

Therefore 

4UT) - * 3J x2u.sPlt(Vj)dVj + <fj >/Xn-jPx(xn-jdXr,-j 

= kj<x2„-j>+<£J>2 
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\ 2 
By subtracting out the average value } and noting that 

(5(0) = ^x y , it can be seen that the normalized autocorrelation 
2 

n 

function must be 

l6(jT) = kj (44) 

Therefore, from Equation 40 

kg - o^k^ + ̂ (0) 

= % + 

= Oid(T) + Og 

(2) Equation 43 also shows that 

F2(w) = F^^w) Pz(w). (45) 

Continuing the same process to determine the transformation relation-

ship for P {xn|xn_j; 

P{xnl \-l\~ xn-l'xn-2'xn-3^ P ̂n-lxn-2xn-^n-2 Zn-3^dxn-l,dxn-

noting that 

P{xn lxn-l'xn-2'xn-3^ " P (x„tx„-Vx„-2) 

we have 

£3<Xn'k3Xn-3) =/p, VA-fV.-!1 ̂ VrVn^Vn-s' 

x fl<x„-2-klx„-3)dXn-ldXn-2 

" /fl(xn-2'klXn-3)dx„-2 fpz 

Pz(xn-l-aiXn-2-™2Xn-3)dxn-I 

The Fourier transform of this equation with respect to x^ is 
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- eJ" ̂  ")X-3 Fl («2^^ (46) 

r WWn-3' 
e-

L 
W' pz<"> 

Therefore 

kg = k^(0^ -KZg) + 

= ̂ (a^+Og) + ̂ ^1 

- oykg + (47) 

Also, 

i (w) = F! [ (a^^w j Pz(a1w) Pz(w) 

Using Equation 40, this can be written 

(48) 

F3(W) = F1(A2W) ?Z(A^W) P^(w) (49) 

And in general, 

F (w) = F (a w) P (a nw) P (a,w) P (w). 
n I n z n-1 z I z 

(50) 

Thus, Equations 44 and 50 define all first conditional probability 

density functions. 

In order to define P (w) in terms of P (w), one more relation-
z x 

ship is necessary; 

" jP[Xnlxn-2i P{X„-2]dXn-: 

The transform of this gives, 

Px(w) = F2(w) Px(k2w) (51) 

or 

F„(w) = 
P (w) 

X 

2 Px(k9w) 
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Therefore, using Equations 41, 44, and 45, 

F (w) 
P„(w) = 
z F^(Q^w) 

Px(°ï%l") 

Px/kg*) P^(^w) 

P (w) Px âi,51w) 

- p^») (52) 

This establishes the distribution required for the random variable 

z in order to produce the prescribed distribution p^(x) for the process 

x(z). Note that if as for a Markov process, Equation 52 

agrees with Equation 5, 

D. The Filter Problem. 

If the second order process model is now introduced as the input 

of an arbitrary filter H(s), the determination of the distribution 

of the filter output y(t) is straight forward and follows directly 

the development of section II-E. From Equation 36, 

xn = zn + V„-l + Vn-2 + "" 

and from Equation 31, 

yn * klxn + k2xn-l + k3xn-2 — 

where again 

aû AT 

k = / h(t) dt 

J (n-l)AT 

Combining these equations 

yn = Z„(K1> + Vl(K2+alV + =„-2(k3+alk2+a2k3) " 

" Vn + ClZn-l + C2Z„-2 """ 
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Therefore, the characteristic function for the distribution of the 

filter output y(t) is given by, 

Py(w) = P^(C^w) Pg(CiW) PgCCgW) --- (53) 

Inversion of this product is accomplished as illustrated in Example 5. 
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IV. ALLOWED DISTRIBUTIONS 

Normally, the distribution of a random process would be defined 

by the underlying cause of the process. For instance, in the case of 

thermal noise, a diffusion type of differential equation dictated by 

the physics of the problem requires that the process be normally dis

tributed. For problems where the cause may not be known, or fully 

understood, it would be desirable to determine what the restrictions 

are on the form of the probability density functions which can be 

approximated by these techniques. 

Equations 5 and 50 show that the conditional probability density 

functions are determined from the primary distribution. These equations 

relating the characteristic functions for the conditional and primary 

distributions clearly to impose some restrictions. Relevant to this 

problem, Gnedenko and Kolomogorov (5) examined the properties of 

"distribution functions of class L". A necessary and sufficient 

condition that a function p(x) belongs to the class L is that for 

every 0 < Ct 1, 

P(w) = P(Ow) G(w) 

where P(w) is the characteristic function for p(x) and G(w) is some 

other characteristic function. Clearly the primary distributions for 

the models outlined here must belong to the class L. Although a precise 

distinction between the distributions which can be described by these 

models and those which cannot has not been determined, the following 

requirements on the primary distribution are noted here: 

a). The characteristic function for the primary distribution must have 

no zero's along the w axis. This can be intuitively seen from 
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EquaCiuu 5 where r (w) is defined at P (w)/P (OCw). If P (w) is 
z xx x 

zero for some w, then P (Qto) will be zero for some other value 
x 

of w. If the freedom to choose any pulse duration, i.e. any 

value of a, is retained, then, in general, the zeros of P^(Qto) 

will be poles for the expression P^(w) and the inverse of such 

a transform could not represent a probability density function. 

This restriction eliminates such distributions as; 

1). Uniform distribution over a finite range 

2). triangular distributions 

3). truncated sinusoid, 

and many others. 

The range of the variable Z can not be greater than the range of 

the process x(t). This is seen from 

xn * zn + Y.-1 + a2zn-2 

Clearly x can assume at least as wide a range of values as Z . 
n n 

This restriction precludes for example 

x 

p^(x) = e 0 < x < a 

= 0 x < 0, x > a 

and many other truncated continuous functions. 

c). Of course, both Pz(z) and p^(x) must be always positive and 

their integrals over the total range of definition for the problem 

must equal unity. 
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V. INPUT DISTRIBUTIONS FROM OUTPUT DISTRIBUTIONS 

Equations 5 and 52 give the characteristic equation for the 

random variable z in terms of the characteristic function for the random 

process x, for 2 separate difference equations. Thus, in each case, the 

distribution of z can be determined from a specified distribution of 

X. It was pointed out that a specific difference equation leads 

to a specific z-transform filter transfer function G(z), relating the 

random variable x. . as the sampled data output of the filter and Z . . 
(z) (z) 

as the sampled data input to the filter. The assumption for this 

model that successive values of z are assumed to be independent is 

equivalent to assuming that the filter has a "white noise" input. 

Either equations 5 or 52, therefore, will provide a solution 

to the following problem: 

Assume; 

1. That the spectrum of the input to a filter is known to be 

wide with respect to that filter and is essentially "white". 

2. That the filter has a z-transform transfer function G(z) 

which can be derived from the difference equation of one 

of the three models presented. In fact, the second order 

difference equation includes the first order case by choosing 

(%2 equal to zero. Further, note that, the relation between 

the input and output distributions is unchanged by whether 

the subscript on z is n, n-1, or n-j. This means that the 

numerator to G(z) can be z raised to any power. Therefore, 

any filter with transfer function 
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G(z) = —2 
z -fO^z-t-Q^ 

can be considered. 

3. That the output distribution is known. 

Under these assumptions, either Equation 5 or 52 will give the 

characteristic function for the input distribution. 

Example 7. 

Suppose the output of a filter with a transfer function, 

G(s)  " <s\ 1)2 

is known to be distributed as 

p(y) = 2 e y - e 2y y >0 

= 0 y <0 

and that the frequency spectrum of the input is known to be much wider 

than that of the filter. 

The z-transform transfer function corresponding to the given 

G(s) is 

G(z) = JLAe. e-_AV 

which for At = 1 

(z - e" 

i ~ 1 ~ 1 
_ ke z 

1 g -1 -1 -2-2 
1 - 2e z + e z 

-1 
If, for convenience ke is set equal to unity, this corresponds to the 

difference equation: 

x = 0.736x -0.135x + z 
n n-1 n-z n-1 

The subscript n-1 on the z term is irrelevant here, however, since the 
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distribution of is the distribution of the complete input process, 

This equation implies that 

a = 0.736 

QL = -0.135 

and, therefore, that, 

"l 
' = -T^T = 0.85 

= ai^i~a2 = 0'49. 

Noting that the transform of p(s) is 

P (s) = 
x^S; (s+1)(s+2) 

Equation 52 states that the characteristic function of the input 

distribution is given by; 

P (s) P (0.625s) 
P (s-) = —— —— 

} P (0.7365) P (0.49s) 
x x 

= (0.736s+l ) (0.736s+2) (0.49s+l) (0.49s+2) 

(s+1) (s+2) (0.625s+l) (0.625s+2) 

„ ,s+1.36\, s+2.72w s+2.04s, s+4.08 \ 
- 0.332 (——)( s+2 )( s+1>6)( s+3>2 ) 

= 0.332 

The inverse of this is 

, . 1.49 0.08 . 0.76 0.2 
1 + —— - — T ;—- + 

s+1 s+2 s+1.6 s+3.2 

0.332 |S(x) + 1.49e"x-0.08e"2x+0.76e"1-6x+ 0.21e"3'2xl 

and represents the distribution that the input process must be. This 

function, as well as the given output distribution, is shown in Figure 8. 
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Figure 8. Shows the predicted input distribution and known output distribution for a filter 
with transfer function G(s) = 718 as calculated in Example 7 

(s+1)2 
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VI. ERRORS 

Since the models treated are only approximate representations 

of continuous input processes, and the implied periodic sampling 

of the output (Equation 28) introduces further error, it would 

be desirable to determine the error of representation of the output 

distribution. However, because the criteria for error might vary 

widely from problem to problem and any quantitative analysis of 

closeness of fit would be legitimate only for each particular dis

tribution, no systematic examination of representation error was 

made. Rather, a specific problem is solved for three different 

choices of At, to provide some feeling for the dependence of the 

shape of the output distribution on the selected input pulse 

width. 

Assume again that the input distribution is 

p(x) = e X x >0 

= 0 x 0 

and that the impulse response of the filter is 

y(t) = 1/3 e ^ 

also assume the autocorrelation function is 

b) = e~lti 

as in Example 5. Then for the three different approximations defined 

by 

a). At = 2, a = 0 

b). /It = 1.5, a = 0.223 

c). At = l.o, a = 0.368 



www.manaraa.com

59 

and shown in Figure 8, the output distributions are shown in Figure 

9. It is seen that the change from At = 1.5 to At = 1.0 did not 

have a great effect on the distribution shape. 
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Figure 9. Shows three approximations to the autocorrelation function 

çi - e '*'for a continuous function by different choices 
of ùt and a. The first case, at = 2, C% = 0, represents 

the model process discribed in (6). The other two cases 

illustrate models described in this paper 
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Figure 10. Shows the predicted output distribution of a first-order filter by three different 
models of the same continuous process. The autocorrelation functions for these 
models as compared to that for the continuous process are shown in Figure 9 
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It might be useful to also note some of the problem areas where 

solutions were attempted but with less or no success. 

A. Axis-Crossings. 

The axis-crossing problem for other than first-order Markov 

processes was not solved because no way was found to transform the 

integral 

when 

Iff p (x ,x ,x t dx dx dx 

*1*2*3 C ' 

P [x3|x2,x^ p{x3|x2^ - P1(x3-k 1* 2 ) -

If an analytic expression could be found for this integral, higher-

order processes could be handled also. Of particular interest 

would be the axis-crossing intervals of band-limited noise with or 

without an additive, known wave form. 

B. Higher-Order Models. 

Treatment of a model process where 

= %-l + + z^ 

was also attempted with some success but considerably more cumber

some computations. This problem was resolved to the point of 

determing the distribution of the generating variable z to be 

_ px(w) Px(ml^lw) W lw) Fx(ai ̂ 2w) 

P(z) Px(f^w) ?x(m^w) P
x(a11l^lw -

where m^ and are constants. No way was found to determine these 

constants however, with only the autocorrelation function for the 
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continuous process given. It is felt that this is philosophically 

consistent with requiring both 

order process, it could also be handled with this technique. 

C. More Complex Models. 

Section IV discusses some of the limitations imposed on the 

form of the probability density functions allowed by this model. 

It is not difficult to conceive of other, more complicated models 

which would probably reduce these restrictions, and an attempt to form

ulate some of them was made. However, in each case, the treatment 

of the model became insufferably unwielding and complex. Perhaps 

other models exist which are little or no more difficult to handle, 

but they were not found. 

and 

to define a third-order process. Thus, if were known for a third-
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VIII. SUMMARY AND CONCLUSIONS 

A. -Specific. Results. 

The rectangular-pulse-model process was found to be an effective 

vehicle for obtaining approximate solutions to many problems. Some 

specific examples treated were; 

1). Determination of the distribution of the output of any 

linear filter with arbitrary precision, when the input 

process is continuous and has a first- or second-order 

autocorrelation function. 

2). Determination of the first conditional probability density 

function, or diffusion equation, for a continuous process 

specified by an autocorrelation function and probability 

density function. 

3). Discription of the axis-crossing durations for any continuous 

Markov process. 

4). Determination of the input distribution of a first- or 

second-order filter, given the output distribution, if the 

input is known to be essentially white. 

B. Indicated Areas of Extension. 

In addition to the specific results mentioned above, the techniques 

outlined seem applicable to the many other related problems. 

Some example are; 

1). Determing the distribution of the axis-crossing intervals 

associated with a known wave-form and additive Markov noise. 
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The linear filter response to a discrete-levei-input 

process. 

The distribution of a filter output for continuous 

inputs with autocorrelation functions of order 

greater than two. 
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